
FixedIT Data Agent
This Agent allows the user to run Telegraf in the camera using any number
of configuration files. The configuration files are used to define the behavior of
Telegraf and can be created and specified by the user. They can also be changed
at runtime.

Telegraf can be used for a wide range of tasks, such as sampling, polling, push-
ing and processing data. The configuration files bundled with the application
(i.e. the files that are used by default if no custom files are specified by the
user) sample system metrics in the camera and push them to another server
(e.g. InfluxDB).

Table of contents:

• FixedIT Data Agent
– Installing the application
– Activating the license
– User interface
– Navigating the UI

∗ Overview page
∗ Logs page
∗ Configuration page

– Application configuration
∗ Debug mode configuration
∗ InfluxDB instance configuration
∗ Message tag configuration

– Advanced application configuration
∗ Parameters for setting Telegraf configuration files
∗ Setting custom environment variables
∗ Automatically set environment variables

– Telegraf config files
∗ Creating and testing custom configuration files on host
∗ Debugging configuration files

– Telegraf plugin overview
∗ Aggregators (statistical data processing)
∗ Inputs (data collection)
∗ Outputs (data forwarding)
∗ Processors (data transformation)
∗ Parsers (data format handling)
∗ Serializers (data format for output)

– Changelog
∗ 1.0.1
∗ 1.0.0
∗ 0.0.4
∗ 0.0.3
∗ 0.0.2

1

https://www.influxdata.com/time-series-platform/telegraf/

∗ 0.0.1

Installing the application
The FixedIT Data Agent application is built for both armv7hf and aarch64
architectures. The correct version should be installed depending on each device’s
architecture. If you are unsure which architecture your device has, see the
QUICKSTART_GUIDE.pdf for further instructions.

Activating the license
This application requires a license to run. After installation, the application can
be turned on, but if the license is not activated, it will not perform any tasks.

The license can be activated either by uploading an offline license file or by per-
forming an online activation using a license code. For step-by-step instructions,
see the QUICKSTART_GUIDE.pdf file.

User interface
The application is available in two versions:

Version with Web UI: This version includes a web-based user interface that
allows you to:

• View Telegraf logs and status in real-time
• Upload, manage, and delete configuration files
• Monitor the application’s health and status

Version without Web UI: This version runs without a web interface and is
typically configured through:

• The FixedIT Installer Agent
• Direct parameter configuration in the camera’s application settings
• SSH access for file management

Both versions output all standard output and error output from the Telegraf
subprocess to the system log at predetermined intervals. The version with a
web user interface also outputs this information in real-time to the web UI.

Navigating the UI
The version of the application that includes a web UI will show an “Open”
button in the camera’s UI, as shown below.

Figure 1: FixedIT Data Agent UI Open button

2

Clicking this button leads to the application’s UI. The UI can also be accessed
at https://<CAMERA_IP>/local/FixeditDataAgent/index.html#/overview.

Note that if the license is not activated, the UI will not be accessible:

To the very left, there is a navigation tab showing all the available pages:
Overview, Logs and Configuration.

Overview page

The default page that opens when accessing the UI from the Open button is the
Overview.

Figure 2: Overview page for FixedIT Data Agent

The box on the left shows the License Status. For instructions on how to install

3

a license, see Activating the license.

The box on the right shows the process status. This indicates the status of
the Telegraf process. If everything is running correctly, the status will show as
Running.

Logs page

The Logs page shows the logs from the Telegraf process. The page is auto-
matically updated with the latest logs, where the newest logs will show at the
bottom. Errors are indicated with a pink background, warnings are indicated
with a yellow background. stdout output is displayed first, then stderr.

Figure 3: UI logs page with stdout and stderr

The default configuration used for Telegraf makes all the log messages related
to the Telegraf process be logged to stderr, which leaves stdout available for
adding custom logging output of metrics or other data which might be useful
when using custom config files in the application.

Configuration page

The Configuration page can be used to manage the configuration files used
by the Telegraf process. This includes viewing the content of the currently
available configuration files in the camera, adding new files, removing files, or
enabling/disabling files. A file being enabled means that it is used by the Tele-
graf process. If it is disabled, it means that it is stored in the camera, but not
used for anything.

Bundled config files

Before any new files are uploaded, the page will only show the bundled config
files in the UI. Files are listed using their full path. The icon of a crossed off

4

Figure 4: Example of errors and warnings in the logs page

Figure 5: Configuration page

5

pencil to the right of each file indicates that the file is read-only.

The content of the files can be viewed by clicking on the arrow to the left of
each filename.

Figure 6: Config file content window

When the content of a file is viewed, the Refresh button also appears to the
right of the filename. Clicking on this will update the content of the file shown
in the UI to the latest version of the file in the camera.

These files can be disabled and enabled as a group, i.e. either all of them or
none of them are used by Telegraf. The bundled files are updated when the
application is updated, and the content and dependencies of the config files
might be refactored. Only having some of the bundled files enabled might break
functionality after an update, so to ensure compatibility, they are treated as a
group. They can be disabled/enabled using the Disable/Enable button at the
top right of the Bundled config files section. If you only want to use some
of the bundled files, it is recommended to disable all bundled files and upload
your own copies of the files you want to use.

Uploading new config files

In addition to the bundled configuration files, you can upload new configuration
files. This can be done by clicking the Upload Config button located in the
top right corner of the UI. This will open up a pop-up window to choose a file
to upload.

After uploading the file, it will show up under the Uploaded config files
section.

The pencil icon to the right of each file indicates that the file is modifiable.

6

Figure 7: Config file upload pop-up window

Figure 8: Uploaded config file

7

Each uploaded config file will show two buttons to the right: Delete and Enable.

• The Delete button removes the file from the camera completely, after
removing the file it will also be removed from the list in the UI.

• The Enable button will make Telegraf use the config file. By default,
Telegraf will not use the uploaded file until it is enabled. The file can be
disabled again after enabling it. Files that are currently enabled cannot
be deleted, they need to be disabled first.

Uploading new helper files

Some configurations might require additional files. These files can be uploaded
by clicking on the Upload Helper File button located in the top right corner.

Figure 9: Helper file upload pop-up window

The file can be made executable by checking the Make executable option. Once
uploaded, the file will show up under Uploaded helper files. Executable files
will be shown in green, as shown below.

The pencil icon to the right of each file indicates that the file is modifiable. The
code icon indicates that the file is executable.

Like for config files, a Delete button will appear to the right of each uploaded
helper file. Clicking on this removes the file from the camera and UI.

Helper files are never used directly by the application, only by the config files.
Therefore, they do not have Enable/Disable buttons.

Example use of config files with helper files

Let’s take the following config file as an example.

8

Figure 10: Uploaded helper file

Configuration for executing a script
[[outputs.exec]]

Command to execute when metrics are received
command = ["${HELPER_FILES_DIR}/trigger_strobe.sh"]

Data format to use for input
data_format = "json"

It runs the trigger_strobe.sh script when metrics are received. The script
needs to be uploaded as a helper file. All helper files are uploaded to the
same directory in the camera, and the application is setting the environment
variable HELPER_FILES_DIR to this path. This variable can then be used from
configuration files as seen in the example above, in the following line:

command = ["${HELPER_FILES_DIR}/trigger_strobe.sh"]

For a more complex use case example involving config files and helper files, see
this video.

Application configuration
This section describes different parameters that can be used to configure how
the application works. These can e.g. be changed from the camera’s UI, in the
application’s Settings tab.

These parameters can also be configured in bulk through automation (for exam-
ple, using VAPIX).

Note that some of these parameters are considered part of the advanced appli-

9

https://www.youtube.com/watch?v=nLwVUYieFLE

Figure 11: Settings tab

cation configuration and are explained in the section below.

Debug mode configuration

• DebugMode: Enables or disables debug logging in Telegraf. When enabled,
Telegraf will output more verbose logging information, which can be useful
for troubleshooting configuration issues. This will set the TELEGRAF_DEBUG
environment variable.

InfluxDB instance configuration

Since a common use case is to send data to an InfluxDB instance, the follow-
ing parameters are available for simplicity and will be used by default by the
output.conf file.

• InfluxDBHost: Hostname or IP address of the InfluxDB instance includ-
ing the protocol (e.g. http://192.168.0.123 or https://influxdb.example.com),
this will set the INFLUX_HOST environment variable.

• InfluxDBPort: Port number of the InfluxDB instance, this will set the
INFLUX_PORT environment variable.

• InfluxDBToken: Authentication token for accessing InfluxDB, this will
set the INFLUX_TOKEN environment variable.

10

Figure 12: Settings window

11

• InfluxDBOrganization: Name of the InfluxDB organization, this will set
the INFLUX_ORG environment variable.

• InfluxDBBucket: Name of the InfluxDB bucket where metrics are stored,
this will set the INFLUX_BUCKET environment variable.

Since the Telegraf process can make use of environment variables, these can
then be used e.g. like this in the config files:

[[inputs.cpu]]
percpu = true
totalcpu = true
name_override = "${KEY2}"

[[outputs.influxdb_v2]]
urls = ["${INFLUX_HOST}:${INFLUX_PORT}"]
token = "${INFLUX_TOKEN}"
organization = "${INFLUX_ORG}"
bucket = "${INFLUX_BUCKET}"

Message tag configuration

To easier keep track of your cameras, we recommend using geo tags and type
tags. These will by default be used by the tags.conf file. Despite our recom-
mendations on how to use the geo tags, there is no enforcement and you are
free to group the geography in whatever way makes sense to your business.

• Area: The top-most geo, e.g. Europe
• Geography: The second level, e.g. Sweden
• Region: The third level, e.g. Stockholm
• Site: The specific location, e.g. Arena 5
• Type: The type of installation, e.g. Surveillance or Analytics

Advanced application configuration
The following are parameters available in the application settings tab which
relate to more advanced configuration.

Parameters for setting Telegraf configuration files

These parameters can be used to specify which configuration files Telegraf should
use. All configuration files will be used in the same process, so note that they will
essentially be merged by Telegraf into one single configuration file affecting the
same process. This is the same as running Telegraf with multiple configuration
files, e.g. telegraf --config config1.conf --config config2.conf.

• ConfPathParamKey: Absolute paths to the Telegraf configuration files,
separated by “;”.

12

• ConfDirParamKey: Absolute path to a folder containing configuration files.
All configuration files in the folder will be used by Telegraf.

It is not recommended to manually configure these settings if the UI is also
being used to upload and configure files, as they might interfere. See the note
about uploading configuration files in the Telegraf config files section.

Currently, there is no officially supported way to upload custom configuration
files in bulk or using automation.

Setting custom environment variables

Environment variables can be configured in the application and will be read-
able from the Telegraf configuration files. Some environment variables used
frequently have their own parameters for simplicity, as seen in the Application
configuration section, but more can be specified using the ExtraEnv parameter.

• ExtraEnv: User defined variables, key-value pairs separated by “;”. E.g.:
KEY=value;KEY2=value2. These will be set in Telegraf’s environment and
can be used from the configuration files.

In the Application configuration section, it is explained that setting some of
the parameters also sets a corresponding environment variable (e.g. setting
InfluxDBHost will set the INFLUX_HOST environment variable). Note that those
environment variables must not be specified in the ExtraEnv parameter.

Automatically set environment variables

The application automatically sets several environment variables for the Telegraf
subprocess that are not configurable by users:

System environment variables:

• HELPER_FILES_DIR: Set to the directory where helper files are stored, use-
ful for referencing helper files in Telegraf configuration files.

• HOME: Set to a dummy directory to avoid Telegraf error messages about
missing home directory. This should not be used by the user.

Device information variables: The following environment variables are auto-
matically set with device-specific information read from the camera’s parameter
system:

• DEVICE_PROP_BRAND: Device brand (e.g., “AXIS”)
• DEVICE_PROP_MODEL: Device model number (e.g., “M1075-L”)
• DEVICE_PROP_VARIANT: Device variant (in most cases, this will be empty)
• DEVICE_PROP_TYPE: Device type (e.g., “Box Camera”)
• DEVICE_PROP_FULL_NAME: Full product name (e.g., “AXIS M1075-L Box

Camera”)
• DEVICE_PROP_SERIAL: Device serial number (e.g., “B8A44F717321”)
• DEVICE_PROP_FIRMWARE: Firmware version (e.g., “12.5.56”)

13

• DEVICE_PROP_ARCH: System architecture (e.g., “aarch64”)
• DEVICE_PROP_SOC: System-on-chip information (e.g., “Ambarella CV25”)

Telegraf config files
Telegraf config files are used to create tasks / services with the FixedIT Data
Agent. A Telegraf config file contains at least one input and one output. It
might also contain processors, parsers, aggregators and serializers. Telegraf can
use multiple config files at the same time, but they will essentially be merged
by Telegraf into one single configuration file affecting the same process. Using
multiple config files is therefore useful to split different tasks to make it easier
to manage them, but will not create independent tasks / services. A config file
might e.g. say “Collect system metrics from the system (CPU usage, memory
usage, etc.) and send them to InfluxDB.”

While the application already contains some configuration files, new ones can
also be copied to the camera in order for the application to use them. If your
application supports the web UI, then you can upload, manage and delete config
files from there. If your application does not, it can be configured from e.g. the
FixedIT Installer Agent.

The application includes several bundled configuration files that provide com-
prehensive monitoring capabilities:

Bundled Configuration Files:

• agent.conf: Core Telegraf configuration with collection intervals and
buffer settings

• input_system.conf: Collects system metrics (CPU, memory, disk, sys-
tem uptime)

• input_network.conf: Monitors network connectivity, DNS, ping, and IP
addresses

• input_camera_server.conf: Health checks for the camera’s HTTP/HTTPS
API endpoints

• output.conf: Sends metrics to InfluxDB using environment variables
• tags.conf: Adds geographic and device information tags to all metrics

When the application is installed in the device, these files are installed to the
/usr/local/packages/FixeditDataAgent/configs/ directory and are used
by default as long as no custom configuration has changed it.

To specify which config files to use, the ConfPathParamKey and ConfDirParamKey
parameters can be set to the paths in the camera that they have been copied
to. By default, the ConfPathParamKey will point to the configuration files
included in the application. You can use both of these simultaneously.

14

Creating and testing custom configuration files on host

If you want to develop and test a telegraf config file, then the easiest way is to
install Telegraf locally and run your config directly on your host machine. E.g.
on Linux you can run:

sudo apt-get install telegraf
telegraf --config <my-config-file.conf>

Config files may make use of environment variables (e.g. ${INFLUX_HOST}) in
the config file. If so, you need to export these variables before running the config
file.

export INFLUX_HOST=http://localhost
export INFLUX_PORT=8086
export INFLUX_TOKEN=<my-token>
export INFLUX_ORG=test
export INFLUX_BUCKET=test_bucket
telegraf --config app/configs/input_system.conf

Debugging configuration files

One way to make debugging easier is to add the following to the config file:

[[outputs.file]]
files = ["stdout"]
data_format = "influx"

This will cause Telegraf to write all captured data to stdout. The application
will log all standard output and errors to the application’s UI, so this can be
useful when debugging how a configuration file works with the application as
well.

Telegraf plugin overview
Telegraf used in the agent has been compiled with a specific set of plugins, these
are the only ones that you can use in your config files when running them in
the FixedIT Data Agent. The following is the complete list of plugins available
in this release.

Aggregators (statistical data processing)

Aggregators process multiple data points over a time window before sending
them to outputs. They reduce noise and provide useful summaries of raw data.

15

Plugin Description When to Use It?
basicstatsComputes mean, min,

max, standard deviation,
etc.

Useful for summarizing sensor
readings before sending data
upstream.

derivativeComputes the rate of
change between data
points.

Ideal for monitoring network
throughput, power usage, or sensor
variations.

final Outputs only the last
value in an aggregation
window.

Reduces unnecessary data
transmission in low-bandwidth IoT
networks.

histogramGenerates bucketed
distribution data.

Useful for latency analysis in network
monitoring.

merge Merges multiple metrics
into one.

Helpful for combining sensor readings
from different data sources.

minmax Tracks min/max values
within a time window.

Useful for detecting spikes and
anomalies.

quantile Computes percentile-based
statistics.

Great for latency and performance
monitoring.

valuecounterCounts occurrences of
unique values.

Detects event frequency, such as error
counts or device state changes.

Inputs (data collection)

These plugins collect data from various sources, including system metrics, net-
work devices, and logs.

Plugin Description When to Use It?
cpu, mem,
disk, diskio,
swap, system

Collects CPU, memory,
disk usage, I/O, and
system uptime.

Essential for monitoring the
health of edge devices.

net, netstat Monitors network
bandwidth, TCP
connections, and packet
statistics.

Helps detect connectivity issues
or abnormal traffic.

file Reads and processes
structured log files.

Useful for log-based monitoring.

tail Reads and processes log
files as they are written
to.

Useful for log-based monitoring.

http_listener_v2Collects metrics via
HTTP.

Ideal for receiving metrics from
external sources.

http_response Measures HTTP
response time and status
codes.

Helps monitor API health.

16

Plugin Description When to Use It?
http Make a HTTP request to

get the content of a web
page.

Good for fetching data from
web APIs.

influxdb Collects data from
InfluxDB databases.

Useful for time-series analytics.

processes Monitors running
processes and resource
usage.

Helps detect abnormal resource
consumption.

socket_listener Receives metrics via a
socket.

Enables custom integrations.

exec, execd Runs a command and
captures the output.

Useful for running custom
commands when there is no
plugin to do what you want to
do.

mqtt_consumerSubscribes to a MQTT
broker and consumes
messages.

Useful for receiving messages
from a server or other
applications and acting on
them.

Outputs (data forwarding)

These plugins send collected data to various destinations, including databases,
logs, and cloud platforms.

Plugin Description When to Use It?
influxdb,
influxdb_v2

Stores time-series data. Best for long-term storage
and analytics.

mqtt Publishes metrics to MQTT
brokers.

Ideal for IoT message
streaming.

exec Sends data to external scripts
for processing.

Enables custom data
handling.

file Saves data to a local file. Useful for local debugging
and backups.

remotefile Saves metrics to a remote file. Helps in distributed
logging.

syslog Sends logs to a syslog server. Useful for log aggregation.
websocket Streams data via WebSockets. Enables real-time

dashboards.

Processors (data transformation)

Processors modify, enrich, or filter incoming data before sending it to outputs.

17

Plugin Description When to Use It?
converter,
scale, override

Converts values, scales
numbers, and overrides fields.

Useful for standardizing
sensor data.

rename,
dedup,
tag_limit

Renames fields, removes
duplicates, and limits tags.

Reduces data noise and
unnecessary processing.

filter, lookup,
defaults

Filters out unwanted data and
applies default values.

Helps in reducing
bandwidth usage.

reverse_dns Resolves hostnames from IP
addresses.

Required for networked
device monitoring.

template,
timestamp,
date

Modifies timestamps and
restructures metrics.

Useful for time-series
data formatting.

starlark, execd Allows custom scripting and
external processing.

Ideal for complex IoT
data manipulation.

Parsers (data format handling)

Parsers convert data from raw formats into structured Telegraf metrics.

Plugin Description When to Use It?
binary Parses binary data into

structured metrics.
Useful for decoding binary data.

influx Parses InfluxDB line protocol. If importing metrics from
InfluxDB sources.

json Parses JSON data. For parsing simple json data.
json_v2 Parses JSON data with

advanced structuring.
Best for parsing complex json
data.

value Parses simple data types like
string and int.

For parsing when the whole input
is a single type

grok Parses log files using custom
patterns.

For parsing log files.

Serializers (data format for output)

Serializers format data before sending it to outputs.

Plugin Description When to Use It?
influx Formats data in InfluxDB line

protocol.
For compatibility with
InfluxDB.

json Formats data in JSON format. For cloud and API integrations.
csv Formats data in CSV format. For spreadsheet and data

analysis.

18

Plugin Description When to Use It?
binary Formats data in binary format. For performance-critical

applications.

Changelog
1.0.1

• Bump to manifest schema version 1.3 (AXIS OS 10.9+).

1.0.0

• Add mqtt_consumer input plugin to the application.
• Add execd input plugin to the application.
• Add the HELPER_FILES_DIR environment variable to the application.
• Complete the rebranding effort to “FixedIT Data Agent”.
• Remove the bundled socket listener configuration file.

0.0.4

• Add configuration parameter for enabling debug mode.
• Add better logging to the system log.
• Correct license notices for third-party software.
• Fix bug to enable trailing slashes in INFLUXDB_HOST parameter.

0.0.3

• Fix bugs in bundled telegraf config files
• Delay telegraf restart when settings are changed to avoid multiple restarts
• Run FixedIT Data Agent as a dynamic user for increased security and

compatibility
• Add socket input to read messages from other ACAP applications

0.0.2

• Set default InfluxDB port to 8086
• Include protocol in InfluxDB host parameter (e.g. http://192.168.0.123

instead of 192.168.0.123) - this makes it possible to use both HTTP for
self-hosted dev servers and HTTPS for servers in production.

0.0.1

• Initial release with basic functionality and simple web UI.

19

	FixedIT Data Agent
	Installing the application
	Activating the license
	User interface
	Navigating the UI
	Overview page
	Logs page
	Configuration page

	Application configuration
	Debug mode configuration
	InfluxDB instance configuration
	Message tag configuration

	Advanced application configuration
	Parameters for setting Telegraf configuration files
	Setting custom environment variables
	Automatically set environment variables

	Telegraf config files
	Creating and testing custom configuration files on host
	Debugging configuration files

	Telegraf plugin overview
	Aggregators (statistical data processing)
	Inputs (data collection)
	Outputs (data forwarding)
	Processors (data transformation)
	Parsers (data format handling)
	Serializers (data format for output)

	Changelog
	1.0.1
	1.0.0
	0.0.4
	0.0.3
	0.0.2
	0.0.1

